

MBE Model Based Environment

Delivering a Product Definition in a Model Based Environment

Delivery of Product Data in a Model Based Environment By Roy Whittenburg, Project Manger II

Agenda

- Introductions
 - Brief Introductions, Personal & Corporate
- MBE an Overview
 - Overview of the Model Based Environment
- Delivering the TDP?
 - How Do You Distribute a MBD
- The BAE Experience
 - Implementing MBE at BAE
 Closing
 - Wrapping It All Up

BAE SYSTEMS

MBE Model Based Environment

The Next Generation of Business

Introductions

Brief Introductions, Personal & Corporate

Who I Am

- Roy Whittenburg BAE Systems
 - Project Manager II
 - Currently responsible for MBE implementation and Modeling Process within Advanced Manufacturing Engineering at Ground Systems, York.

BAE Systems Land & Armaments

Ground Systems – A Summary

- Protected Fighting Platforms for Today's Warfighter as well as the Battlefield of Tomorrow
 - Predominant Supplier to the U.S. Army Heavy Brigades with Bradley, HERCULES, Paladin, M113
 - Mine-Protected Wheeled Vehicles
 - FCS Manned Ground Vehicles and Armed Robotic Vehicle
- Key Technologies
 - Advanced Protection and Mobility Solutions for Soldiers, Manned Vehicles and Robots
 - Outstanding Program Management and Experienced Workforce
 - 3,094 employees, including 600+ technologists (+522 contractors)
- World-Class Development Processes
 - CMMI Level 5 Software and Systems Engineering Process
 - Physics-Based Models & Real-Time Simulation Capabilities
 - Rapid Prototyping of Complex Systems
- Lean, Cost-effective Production Facilities

GS is a modern, efficient, full-spectrum developer, integrator and supplier of survivable, lethal ground combat platforms and advanced technologies

2008 Army Research Laboratory Sponsored Team

MBE Model Based Environment

The Next Generation of Business

Overview of the Model Based Environment

Ê.

BAE SYSTEMS

What Is Model Based Environment?

A fully integrated and collaborative environment founded on 3D product definition detail that is shared across the enterprise to enable rapid, seamless, and affordable deployment of products from concept to disposal.

BAE SYSTEMS

Conventional Design to Manufacturing Process

- The conventional processes are inefficient
- They rely on the manual rekeying or re-creation of the product definition
- Delivery of the product definition is also paper base
- In process changes that may or may not get incorporated into the model results in confusion and a high error rate

The conventional process has reached its functional limits

The Model Based Definition Process

- The MBE approach streamlines the process by eliminating the traditional 2D Drawing
- It also incorporates the needed downstream interfaces so the product definition can be reused vs. re-created
- This approach also allows for a single source master reducing confusion and errors

MBE is key to our future ability to reduce our time to market and lean our processes

Taming the Furball – Process For Annotating Models Vs. Drawings

The Big Models in MBE

- The product life cycle can be broken down into a series of architectural "models" with unique applications
 - These are the upper level models that must be controlled in order for MBE to work

Base Application Architecture

The MBE Collaborative Environment is made up of three base environments as shown below:

Digital Product Definition Package (DP)2

EPDM Report Document Containing Links to Data and Overall Component Revision United Defense **General Notes, Parts List,** General Note **Revision History**, ower Gate, RSV .95-C-0000 Supporting Analyses List, APPLICABLE STANDARDS/SPECIFICATIONS **Digital Product Definition Package** ASME V14.5M-1994 THREADS ARE ASME 01.13-1995 ΠΠ Etc. 2. EXCEPT AS NOTED 2.1 EDGE BREAKS 0.1-1.0 2.2 FILLETS R 0.1-1.0 Component information 61001371 Part Number Nonenciature Mount Lower Gate RSN IN ESS OTHERWISE SPECIFIED A FEATURE SHO ANOTHER FEATURE SHALL BE PERPENDICULAR WITHIN THE ZONE ESTABLISHED BY THE FEATURE'S ENVELOPE TOLERANCE. Contract DAAE30-95-C-0009 **Light Weight** STEEL STAMP, ETCH OR ENGRAVE "44114-E1C01371" AND MFR CAGE CODE JWW ML-STD-130 IN APPROX LOCATION SHOWN, CHARACTERS 5 APPROX Author D.LUTZ Maharity Index AL ALLOY AMS 4027, ALTN: QQ-4-A-25011 CAD Model Shine Released Superceded Faile (Productview) Deat TA MANAGETTA ME-RARY -----**Date Revided** 84.04 Component Definition items ter. Death Spanneded. STC01371 MOUNT LOWER GATE an Pro/E Part Faint BECONDER MOUNT LOWER GATE NTUR Gen fattes Fate elouisti MOUNT LOWER GATE PLAN **Parts List** Faite GEORGE MOUNT LOWER GATE IN STEP Faite 61C01371 MOUNT LOWER GATE ett Productview Faite SECONSTY MOUNT LOWER GATE REV IN **Hey History** Faite Related Data Remo ter Revelor Type WL-STD-10 Millery Standard ML-510-100 Millery Standard ASHE YTE #1 Industry Standard THREADS ARE ASMED! 13-1995 Industry Standard 1005 Asternal Specification AME 402 AMAS 2471 Finish Specification Legal Statement - Today OSTREUTICE STATEMENTO, DISTRIBUTION AUTHORIZED TO THE DOD AND U.S. DOD. CONTRACTORS ONLY; SPECIFIC AUTHORITY. THIS DETERMINATION WAS MADE ON 28 DECEMBER 1994. OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED TO THE OFFICE OF THE PROJECT MANAGER, LETHALITY, ATTN: SFAE-GCS-CR, PICATININY ARSENAL, NEW JERSEY, 07006-5000. WARNING THIS DOCUMENT CONTAINS TECHNICAL DATA WHOSE EXPORT IS RESTRICTED BY THE **Original CAD Model** 2,8525 CONTROL ACT (TITLE 22, U.S.C. SEC 2751, et seq) OR THE EXPORT ADMINISTRATION ACT OF 1979, AS AMENDED, TITLE 50, U.S.C. APP 2401 et and . VIOLATIONS OF THESE EXPORT LAWS ARE SUBJECT TO SEVERE CRIMINAL PENALTIES. DISSEMILIATE IN (3D Drawing) ACCORDANCE WITH THE PROVISIONS OF DOD DIRECTIVE \$230.25 DESTRUCTION NOTICE DESTROY BY ANY METHOD THAT WILL PREVENT DISCLOSURE OF CONTENTS OR RECONSTRUCTION OF THE DOCUMENT

Proven Benefits

Significant Reductions:

- Non- Recurring Cost reduced By: 50% .
- Non-Recurring Cycle Time Reduced By: 50%
- First Article Costs Reduced By: 65% 50%
- **TDP Changes Reduced By:**
- Product Non-Conformance Reduced By: 90%
- **Recurring Cycle Time Reduced By:**
- **Recurring Costs Reduced By:**
- Support Cost Reduced By:

50% 50%

50%

Other Benefits:

- Reduced Learning Curve
- Integrated Learning
- Validated Design & Assembly Integrity
- Validated Operations Sequences & Tooling
- No Traditional Drawings
- **Flexibility of Work Force**
- **Drives & Validates** Design Release

EVERETT, Wash. (AP)--A powerful computer system that simulates the assembly of Boeing Co.'s new 787 Dreamliner cut typical costs by about 20 percent and trimmed a full year from production, officials said Wednesday.

Reduces Product Cost By:

- **Defining and Validating Factory Processes**
- **Defining and Validating Assembly Processes**
- **Defining and Validating Quality Process**
- **Defining and Validating Tolerance Management**

This data was initially published by **Boeing but** has since been validated through real world use at **BAE Systems** Land and Armaments

The Next Generation of Business

MBE Model Based Environment

The Next Generation of Business

Delivering the TDP? How Do You Distribute a MBD

Č

2

Supply Chain Integration

Connectivity is key to efficiency and quick turn around

- Integrating the supply chain into the EPLM tool enables rapid delivery and update of the TDP
- It also ensures the reuse of the data vs. its recreation, reducing lead time and cost
- A further benefit is better control of the condition of supply and process through out the product lifecycle

Delivering the TDP

- To be fully efficient the MBE process must have a delivery method that is CAD neutral, lightweight and free
- In addition, this delivery method must be secure
- To this end the MTO has selected Adobe as the delivery method of choice to both the customer and external supply chain
- The Adobe tools utilized are:
 - Digital Rights Management
 - 3D PDF
 - Portfolio

Digital Rights Management

- To insure the data is secure and that only authorized personnel use the data after it is downloaded we will utilize the Adobe Life Cycle Server
- Rights will be automatically assigned depending on what workflow is being activated, the user and the program in control of the data
- The rights applied are a combination of specific user and time restriction

3D PDF

- To provide a CAD neutral method of delivering a fully annotated solid model that can be consumed without a workstation we are working with Adobe to develop its 3D PDF format
- Currently it will work for geometry and some annotations but it cannot currently support the MTO's organization techniques
- We are currently targeting 18 months for incorporation of this functionality

Portfolio

- To fully define a product more than one file is needed
- In order control these files as a single entity we will be using Adobe portfolio that is automatically generated by a PLM workflow
- The portfolio will have a dynamic coversheet that is populated by metadata passed to it from Windchill
- Other data types contained in the portfolio are:
 - Supplemental Data Documents
 - Native CAD Data
 - STEP and IGES files

BAE SYSTEMS					
Part Number	5426833			-	
Nemarciatura:	winarciatus: Waldmant, Stearing			//	
Autora: John Das					
Revision:	Revision: A				
Vereion:	2				
Report Date:	9/12/2009				
Superveided:	No				
Maturity:	5		1	P.	
Contrest:	W49911	/dget 1			
Required Objects					
ObjectName		Турэ	Superceded	Revieta	
5426829_weldmarksem		FrotE Assembly	ND.	A2	
5426839_weidment_bonntxt		Elitof Material.In TXT	No	A2	
5420054.prt		Component ProtE Part	No	A1	
5426085.pt		Component ProtE Part	No	A2	
5426826.pit		Component ProtE Part	ND	C.5	
5126827.prt		Component ProtE Part	Yes	AA	
5426828.pit		Component PlotE Part	ND ND	A1	
5426829.prl		Component ProtE Part	100	A1	
5426830.prt		ComponentProtE Part	Yes	A1	
5426881.pt		Component ProfE Part	Na	A1	
5426882 pit		Component ProtE Part	ND ND	A1	
5420883.pit		Component ProtE Part	ND ND	A1	
5426834.prl		Component ProtE Past	120	A1	
5420885.prt		Component ProtE Part	ND	A1	
Eptional Objects					
GbjoctNamo		Туро	Suppression	Rostelan	
5426839_weidment.doc		Supplemental Documentation Doc	No	<u>A2</u>	
5426889_weidmentatp		STEP Model	No	A2	
5126839 weidmentlige		1325 Model	No	A2	
CARGON workformelter dr		Advise 107,0000	Min.	0.00	

BAE SYSTEMS

MBE Model Based Environment

The Next Generation of Business

The BAE Experience Implementing MBE at BAE

Č

ļ

÷.

BAE MBE Experience

Effects of MBE Tech Transfer

Mine Resistant Ambush Protected (MRAP) Vehicle

- Since 2nd Quarter 07 we have:
 - Designed the base MRAP
 - Designed 8 major variants
 - Delivered approx 1100 vehicles
- In each case the vehicles were in production before a traditional 2D TDP was created (and then only at the customer request)
- Work instructions were created from the production model
- Produceablity was concurrent with design

The successes were enabled by "brute force" MBE

Red River Army Depot

- Red River Army Depot is the primary location for remanufacture of the Bradley Armored Fighting Vehicle
- We were sponsored by the Army Research Laboratory to implement MBE at that location
- In six months with no CAD experience they went from paper based to 3D work instructions for the Bradley transmission

BAE SYSTEMS

MBE Model Based Environment

The Next Generation of Business

Closing Wrapping It All Up

Questions?

And We Charge On!

